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a b s t r a c t

This study deals with elastic-wave identification of discrete heterogeneities (inclusions) in
an otherwise homogeneous ‘‘reference” solid from limited-aperture waveform measure-
ments taken on its surface. On adopting the boundary integral equation (BIE) framework
for elastodynamic scattering, the inverse query is cast as a minimization problem involving
experimental observations and their simulations for a trial inclusion that is defined
through its boundary, elastic moduli, and mass density. For an optimal performance of
the gradient-based search methods suited to solve the problem, explicit expressions for
the shape (i.e. boundary) and material sensitivities of the misfit functional are obtained
via the adjoint field approach and direct differentiation of the governing BIEs. Making
use of the message-passing interface, the proposed sensitivity formulas are implemented
in a data-parallel code and integrated into a nonlinear optimization framework based on
the direct BIE method and an augmented Lagrangian whose inequality constraints are
employed to avoid solving forward scattering problems for physically inadmissible (or
overly distorted) trial inclusion configurations. Numerical results for the reconstruction
of an ellipsoidal defect in a semi-infinite solid show the effectiveness of the proposed
shape-material sensitivity formulation, which constitutes an essential computational com-
ponent of the defect identification algorithm.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Elastic-wave sensing of penetrable (i.e. deformable) heterogeneities in a solid matrix is a long-standing problem in
mechanics with applications to nondestructive material testing, seismic prospecting, medical diagnosis, and underground
object identification. In the context of seismic exploration, comprehensive three-dimensional (3D) mapping of subterranean
structures commonly entails the interpretation of a large number, often thousands, of motion measurements using elasto-
dynamic or acoustic models based on domain discretization, see e.g. [41]. In contrast, this investigation focuses on the map-
ping of objects buried in a known reference solid, from only a limited number of remote measurements. In such instances,
boundary integral equation (BIE) formulations [11,15] provide a direct mathematical link between the observed waveforms
and the geometry and material characteristics of a hidden object, and therefore allow to exploit effectively the limited data.

Although inverse scattering in general has been the subject of intensive mathematical and computational research
[40,26,13,16], only limited efforts have so far been devoted to the wave-based reconstruction of homogeneous elastic inclu-
sions. Two-dimensional BIE formulations of the inclusion identification problem were proposed in [27,29] (elastostatics) and
[43] (elastodynamics). Volume integral equations of the Lippmann–Schwinger type, which entail domain discretization over
. All rights reserved.
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a region in which flaws are a priori expected, are used in e.g. [46] with seismic waves idealized as acoustic waves and [38,1]
in conjunction with the contrast source inversion concept for elastic and electromagnetic waves, while fast solution methods
are proposed in [23]. Mathematical results on identifiability are given in e.g. [24]. More recently, approximate identification
methods based on the small-inclusion asymptotics [5,19,6,25], specialized analytical solutions [7], or energy considerations
[4] were proposed for preliminary ‘‘scanning” of solid bodies.

The focus of this investigation is the development of a computational platform for the 3D identification of penetrable elas-
tic inclusions via an elastodynamic BIE framework. This approach rests upon the full three-dimensional elastodynamic mod-
el, with no resort to approximations such as the Born linearization or small-inclusion asymptotics. The inclusions are
assumed homogeneous and bonded to the surrounding reference medium; as such, they are characterized by their boundary
(i.e. the surface that separates them from the reference medium), elastic tensor, and mass density. For identification pur-
poses, the inverse problem is reduced to the minimization of a cost functional representing the misfit between experimental
observations (values of displacements at sensor locations) and their simulations for an assumed inclusion configuration. The
latter are based on a coupled system of regularized boundary integral equations [11,36]. For computational efficiency of the
gradient search technique employed by the inverse solution, the shape sensitivity of the featured cost functional is evaluated
via an adjoint field approach which, besides the matter of elegance, is computationally much more efficient than finite-dif-
ference evaluations. This is accomplished by generalizing upon the shape sensitivity approach proposed in [21] for elastic-
wave void identification and in [10] for the inverse scattering of acoustic waves. To completely characterize penetrable elas-
tic defects, the material sensitivity of the cost functional is derived using two alternative methodologies: (i) a direct differ-
entiation approach based on the material parameter derivative of the governing BIE pair, or (ii) adjoint field approach. A
similar BIE-based treatment of shape-material sensitivity has been recently proposed [47] for optical tomography featuring
the scalar Helmholtz equation with a complex wavenumber, while e.g. [3,37] present other applications of adjoint-based
shape sensitivity analyses.

Making use of the message-passing interface, shape and material sensitivities derived in this study are implemented in a
data-parallel code and integrated into a nonlinear optimization algorithm towards the solution of the 3D inverse problem.
Preliminary identification studies on sample inclusion configurations demonstrated that the unconstrained (quasi-Newton)
minimization algorithm, that was successfully used in previous studies [21,32] for 3D void reconstruction, performs unsat-
isfactorily for the geometric-material identification problem at hand. For this reason, a more robust algorithm based on the
augmented Lagrangian cost functional [34] has been developed as a means to deal with physical inequality constraints, with-
out increasing the dimension of the parametric space, and ensure that all iterates (in terms of the inclusions’ geometric and
material parameters) be physically admissible. The elastodynamic transmission problem, whose repeated solution is re-
quired by the minimization, is thus always well-posed. The numerical results, which employ a direct boundary element
method (BEM) for the primary, adjoint and material sensitivity solutions, demonstrate the feasibility of identifying the
geometry and material characteristics of penetrable (elastic) defects hidden in a semi-infinite solid from only a limited num-
ber of waveform measurements taken on the (traction-free) surface.
2. Direct and inverse scattering by elastic inclusions

Consider an inverse scattering problem where the reference homogeneous solid X, containing a bonded inclusion bXtrue

with boundary Ctrue, is probed by elastic waves. The reference medium, whose external boundary (available for testing) is
denoted by S, is characterized by its elastic tensor C and mass density q; the respective material characteristics of the inclu-
sion are denoted as bCtrue and q̂true. The ensuing shape and material sensitivity analyses (Sections 3–5) are carried out for the
reference solid of an arbitrary shape, whereas the computational treatment and numerical results presented thereafter (Sec-
tions 6, 7) assume a semi-infinite configuration whereby S denotes the traction-free surface of the half-space, and isotropic
elastic properties in X� and bXtrue.

Inverse problem. To identify the geometry bXtrue and material characteristics bCtrue and q̂true of the hidden defect, time-har-
monic excitations are applied in the form of volume (f) and surface (g) force densities having respective supports V � X and
St � S, and displacements uD over the complementary surface Su ¼ S n St . The implicit time-harmonic factor expðixtÞ where
x denotes the angular frequency of excitation is omitted hereon. Letting bX denote a trial inclusion bounded by C and
X� ¼ X n ðC [ bXÞ be the region surrounding the obstacle, the prescribed excitation ðf ; g;uDÞ gives rise to elastodynamic dis-
placement fields u ¼ u½bX; bC; q̂� in X� and û ¼ û½bX; bC; q̂� in bX.

For identification purposes, the displacement uobs induced in the flawed solid by ðf ; g;uDÞ is monitored over the measure-
ment surface Sobs � St (other possibilities, e.g. finite sets of measurement points, being also allowed by the ensuing treat-
ment). Ideally, a defect configuration ðbXtrue; bCtrue; q̂trueÞ such that
u½bXtrue; bCtrue; q̂true� ¼ uobs ðon SobsÞ ð1Þ
is sought, where u on Sobs is understood in the sense of the trace. In practice, due to many factors (e.g. incomplete and/or
inexact measurements, modelling uncertainties), the inclusion is sought so as to minimize a misfit cost functional
J ðbX; bC; q̂Þ ¼ Z
Sobs

uðu½bX; bC; q̂�ðnÞ;uobsðnÞ; nÞdSn; ð2Þ
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where function u, which quantifies the misfit between the predicted and observed displacements, is assumed to be differ-
entiable with respect to its arguments. For example, the usual least-squares measure of misfit is defined through
2uðu;uobs; nÞ ¼ ju� uobsj2.

Forward problem. Let L and bL denote the Navier partial differential operator, respectively associated with the reference
solid and inclusion, i.e.
Lu � divðC : $uÞ þ qx2u; bLû � divðbC : $ûÞ þ q̂x2û: ð3Þ
In (3) and thereafter, all quantities defined with reference to the inclusion or its constitutive parameters are indicated
with a hat symbol. Moreover, the nabla symbol $ denotes the gradient operator, with the convention $ð�Þ ¼ ð�Þ;‘ � e‘ (the
comma denoting a partial derivative), while the column symbol ‘:’ indicates a two-fold inner product between tensors,
e.g. ðC : $uÞij ¼ Cijk‘uk;‘.

The predicted displacement featured in cost functional (2) solves the forward problem
ðaÞ Luþ f ¼ 0ðin X�Þ; ðbÞ bLû ¼ 0ðin bXÞ; ð4Þ
u ¼ û; t þ t̂ ¼ 0 ðon CÞ; ð5Þ
ðaÞ t ¼ gðon StÞ; ðbÞ u ¼ uDðon SuÞ; ð6Þ
where Eqs. (4)–(6), respectively state the elastodynamic field equations, the perfect-bonding interfacial transmission condi-
tions, and the external boundary conditions. In (5) and (6), t � ðC : $uÞ � n and t̂ � ðbC : $ûÞ � n̂ are the boundary tractions rel-
ative to the reference medium and the inclusion, respectively, with n̂ ¼ �n and n denoting the unit normal exterior to X�.

If the reference domain X extends to infinity in any direction, as is the case for the semi-infinite solid examined later, u
must in addition satisfy a suitable radiation condition at infinity (this can be relaxed so as to allow e.g. scattering of incident
plane waves, see Appendix A.2). Moreover, (4) implicitly carries the assumption bX \ V ¼ ;, i.e. the forward problem (4)–(6) is
considered only for a inclusion that is separated from the body force support.

Two alternative formulations of problem (4)–(6) are now summarized: (i) the weak formulation, upon which the general
results in terms of sensitivity formulas are established (Sections 3–5), and (ii) the BIE formulation used here as a basis for the
computational treatment and numerical results (Sections 6, 7).

Weak formulation. The forward transmission problem (4)–(6) can be recast in weak form whereby ðu; ûÞ 2 VðuDÞ must
satisfy
Aððu; ûÞ; ðw; ŵÞÞ � FðwÞ ¼ 0 8ðw; ŵÞ 2 Vð0Þ; ð7Þ
with the function spaces V, the symmetric bilinear form A, and the linear form F defined by
VðuDÞ ¼ ðw; ŵÞjw 2 H1
locðX

�Þ
h i3

; ŵ 2 ½H1ðbXÞ�3;w ¼ uD on Su;w ¼ ŵ on C
� �

; ð8aÞ

Aððu; ûÞ; ðw; ŵÞÞ ¼
Z

X�
aðu;wÞdV þ

Z
bX âðû; ŵÞdV ð8bÞ

FðwÞ ¼
Z

V
f �wdV þ

Z
St

g �wdS ð8cÞ
and the bilinear energy densities a in X� and â in bX given by
aðu;wÞ ¼$u : C : $w� qx2u �w; ð9aÞ
âðû; ŵÞ ¼$û : bC : $ŵ� q̂x2û � ŵ: ð9bÞ
BIE formulation (semi-infinite solid). Wave propagation and scattering in an elastic half-space is a suitable idealization for a
number of applications such as nondestructive material testing and seismic exploration. BIE formulations, which deal effec-
tively with unbounded domains, are a natural framework for such configurations. With reference to the Cartesian frame
fO; n1; n2; n3g, let the host domain X be semi-infinite ðn3 P 0Þ and bounded by the traction-free surface S ¼ fnjn3 ¼ 0g. Let
U(x,n) and T(x,n) denote the (half-space) elastodynamic Green’s tensors, defined such that Ui‘ and Ti‘ ði; ‘ ¼ 1;2;3Þ, respec-
tively denote the ith component of the displacement and traction at n 2 X resulting from a unit time-harmonic point force
applied at x 2 X in the ‘th direction, with Ti‘ vanishing identically on S. Similarly, let bUðx; nÞ and bT ðx; nÞ denote the (full-
space) elastodynamic Green’s tensors corresponding to the material properties of the inclusion. With these definitions,
the forward problem (4)–(6) for a semi-infinite solid can be reformulated in terms of a pair of regularized boundary integral
equations [11,36]:
uðxÞ þ
Z

C
ðuðnÞ � uðxÞÞ � ½Tðx; nÞ�1dSn þ

Z
C

uðnÞ � ½Tðx; nÞ�2dSn �
Z

C
tðnÞ � Uðx; nÞdSn ¼ uFðxÞ; x 2 C; ð10ÞZ

C
ðuðnÞ � uðxÞÞ � ½bT ðx; nÞ�1dSn þ

Z
C

uðnÞ � ½bT ðx; nÞ�2dSn þ
Z

C
tðnÞ � bUðx; nÞdSn ¼ 0; x 2 C ð11Þ
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written, respectively for the ‘‘matrix” X� and inclusion bX, in terms of the traces (u,t) on C of the exterior field. The free field uF

featured in (10) is the solution to (4), (5) when no inclusion is present, and is explicitly given by
uFðxÞ ¼
Z

V
f ðnÞ � Uðx; nÞdVn þ

Z
S

gðnÞ � Uðx; nÞdSn; x 2 X: ð12Þ
For regularization purposes, the traction Green’s functions in (10) and (11) are decomposed [21] into the sum of (fre-
quency-independent) singular parts ½T�1; ½bT �1 and (frequency-dependent) regular parts ½T�2; ½bT �2 according to
Tðx; nÞ ¼ ½Tðx; nÞ�1 þ ½Tðx; nÞ�2; bT ðx; nÞ ¼ ½bT ðx; nÞ�1 þ ½bT ðx; nÞ�2:

On solving (10) and (11) for u and t, the displacement in the (reference) solid surrounding the inclusion is given by the

integral representation formula
uðxÞ ¼ uFðxÞ þ
Z

C
ftðnÞ � Uðx; nÞ � uðnÞ � Tðx; nÞgdSn; x 2 X�: ð13Þ
Letting SR denote the sphere of radius R centered at the origin (10) and (13) rest on the assumption that u is a radiating
elastodynamic state in the semi-infinite solid X�, whereby u,t satisfy the generalized radiation condition [28]
lim
R!þ1

Z
SR\X
fuðnÞ � Tðx; nÞ � tðnÞ � Uðx; nÞgdSn ¼ 0; x 2 X�: ð14Þ
3. Differentiation with respect to inclusion perturbations

To quantify the effect of the inclusion’s boundary and material parameter perturbations on the cost function (2), the de-
fect configuration ðbX; bC; q̂Þ is assumed to depend on a time-like evolution parameter s [39,44], with the unperturbed, ‘initial’
configuration ðbX; bC; q̂Þ conventionally associated with s ¼ 0. In this study, only the first-order infinitesimal perturbations of
ðbX; bC; q̂Þ, i.e. the first-order ‘‘time” derivatives at s ¼ 0, are considered. Perturbations of the inclusion’s constitutive proper-
ties can thus be expressed as
bCs ¼ bC þ bC 0s; q̂s ¼ q̂þ q̂0s; ð15Þ
whereas the shape perturbations of bX can be synthesized as
x 2 X! xs ¼ xþ hðxÞs 2 Xs; ð16Þ
where hðxÞ is a given (i.e. prescribed) transformation velocity field. In the sequel, hðxÞ is assumed to vanish outside of a neigh-
bourhood of bX, which postulates the existence of a bounded region O satisfying
ðaÞ bX � O � X; ðbÞ h ¼ 0 in X nO; ðcÞ O \ S ¼ ;; ðdÞ O \ V ¼ ;; ð17Þ
with (c) and (d) stemming from the natural assumption that the trial inclusion intersect neither the external surface nor the
body force support.

Total and Lagrangian derivatives of field variables. Consider a generic field variable g which depends on the inclusion con-
figuration ðbXs; bCs; q̂sÞ, e.g. the solution of the forward problem (4)–(6). Such quantity can be represented in the form
gðx; bXs; bCs; q̂sÞ. Let the total derivative, g

}
, of g be defined by
g
}
¼ lim

s&0

1
s
½gðxs; bXs; bCs; q̂sÞ � gðx; bX; bC; q̂Þ�; ð18Þ
i.e. by following the evolution of g at a point xs moving according to geometric transformation (16), while the inclusion’s
material parameters are perturbed according to (15). The contributions to g

}
of the inclusion’s geometric and material per-

turbations can be separated through additive decomposition
g
}
¼ g
�
þg0; ð19Þ
with the shape sensitivity g
�

and material sensitivity g0, respectively defined by ‘‘freezing” the material parameters and the
shape of the inclusion in (18), i.e.
g
�
¼ lim

s&0

1
s
½gðxs; bXs; bC; q̂Þ � gðx; bX; bC; q̂Þ� ð20Þ

g0 ¼ lim
s&0

1
s
½gðx; bX; bCs; q̂sÞ � gðx; bX; bC; q̂Þ� ¼ og

obC � bC 0 þ og
oq̂

q̂0: ð21Þ
The shape sensitivity thus corresponds to the Lagrangian time derivative of continuum kinematics with the physical time
variable replaced with a pseudo-time. For the ensuing developments, it is useful to note that the shape sensitivity of a gra-
dient is given [39] by
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ð$gÞ� ¼ $ g
�
�$g � $h: ð22Þ
Differentiation of integrals. Consider a generic domain integral I of the form
I ¼
Z
O

gðx; bXs; bCs; q̂sÞdV ;
in Eulerian description, where O denotes the support of geometric perturbation (16). Upon noting that the shape sensitivity
of dV is given by d V

�
¼ ½divh�dV , the total derivative of I [39] can be written as
ðaÞ I
}
¼ I
�
þI0; ðbÞ I

�
¼
Z
O

fg
�
þgdivhgdV ; ðcÞI0 ¼

Z
O

g0dV : ð23Þ
4. Shape sensitivity using an adjoint solution

Taking into account assumption (17c) whereby Sobs remains invariant under perturbation (16), the shape sensitivity of
cost functional (2) takes the form
J
�
¼ Re

Z
Sobs

u;uðu;uobs; nÞ � u
�

dS

( )
; ð24Þ
where the complex-valued function u;u is defined as
u;u ¼
ou
ouR
� i

ou
ouI

; ðuR ¼ ReðuÞ;uI ¼ ImðuÞÞ: ð25Þ
On parameterizing the geometric perturbation (16) in terms of a selected shape parameter a and setting s ¼ a� a0, for-
mula (24) yields the derivative of J with respect to a evaluated at a0 in terms of the derivative solution u

�
; this is the essence

of the so-called direct differentiation approach. One can however circumvent the actual computation of derivatives u
�

(one
for each shape parameter describing the sought inclusion) by resorting to the adjoint field approach, to whose formulation the
remainder of this section is devoted.

4.1. Displacement shape sensitivity – weak formulation

Since the weak formulation (7) of the forward problem (4)–(6) holds for all perturbed inclusion configurations, the gov-
erning weak formulation for the displacement shape sensitivity ðu

�
; û
�
Þ can be obtained by exploiting the identity
A
�
ððu; ûÞ; ðw; ŵÞÞ � F

�
ðwÞ ¼ 0 8ðw; ŵÞ 2 Vð0Þ: ð26Þ
As shown in Appendix A.1, application of the Lagrangian differentiation formula (23b) to (8b) results in
A
�
ððu; ûÞ; ðw; ŵÞÞ ¼ Aððu

�
; û
�
Þ; ðw; ŵÞÞ þAððu; ûÞ; ðw

�
; ŵ
�
ÞÞ þ

Z
X�

Lw � ð$u � hÞdV

þ
Z
bX bLŵ � ð$û � hÞdV þ

Z
C
½n � Eðu;wÞ þ n̂ � bEðû; ŵÞ� � hdS; ð27Þ
where the bilinear tensorial function E(u,w), related to the dynamic Eshelby energy-momentum tensor [17], is defined by
Eðu;wÞ ¼ aðu;wÞI � ðC : $wÞ � $u� ðC : $uÞ � $w: ð28Þ
(I: second-order identity tensor) and bEðû; ŵÞ is defined similarly in terms of the inclusion characteristics. Invoking assump-
tion (17d), one further finds that the Lagrangian derivative of FðwÞ is given by
F
�
ðwÞ ¼ Fðw

�
Þ: ð29Þ
On substituting (27) and (29) into (26), invoking the equality obtained by setting ðw; ŵÞ ¼ ðw
�
; ŵ
�
Þ in (7), and noting that

u
�
¼ 0 on Su (since the prescribed displacement uD is insensitive to the inclusion shape), the displacement shape sensitivity
ðu
�
; û
�
Þ 2 Vð0Þ is found to be governed by the weak formulation:
Aððu
�
; û
�
Þ; ðw; ŵÞÞ ¼ �

Z
X�

Lw � ð$u � hÞdV �
Z
bX bLŵ � ð$û � hÞdV �

Z
C
½n � Eðu;wÞ þ n̂ � bEðû; ŵÞ� � hdS 8ðw; ŵÞ 2 Vð0Þ:

ð30Þ
4.2. Adjoint solution

The main motivation behind the adjoint state approach is to evaluate the shape sensitivity (24) in an indirect, and com-
putationally faster, manner by circumventing the actual computation of field sensitivities u

�
. Interpreting the integral in (24)
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as a virtual work and treating the sensitivity u
�

therein as a test function leads to define the adjoint state ðv; v̂Þ 2 Vð0Þ by the
weak statement
Aððv; v̂Þ; ðw; ŵÞÞ ¼
Z

Sobs

u;uðu;uobs; nÞ �wdS 8ðw; ŵÞ 2 Vð0Þ; ð31Þ
whose solution ðv; v̂Þ is the adjoint state. The adjoint transmission problem (31) can equivalently be stated in strong
form as:
ðaÞ Lv ¼ 0 ðin X�Þ;
ðbÞ bLv̂ ¼ 0 ðin bXÞ

( ðcÞ p ¼ u;u ðon SobsÞ
ðdÞ p ¼ 0 ðon St n SobsÞ
ðeÞ v ¼ 0 ðon SuÞ
ðfÞ v ¼ v̂; pþ p̂ ¼ 0 ðon CÞ

8>>><>>>: ð32Þ
where p ¼ ðC : $vÞ � n and p̂ ¼ ðbC : $v̂Þ � n̂ are the traction vectors, respectively associated with v and v̂. Alternatively, traces
ðv;pÞ on C of the solution to problem (32) satisfy integral Eqs. (10) and (11) with the free field given by
vFðxÞ ¼
Z

Sobs

u;uðuðnÞ;uobsðnÞ; nÞ � Uðx; nÞdSn; x 2 X: ð33Þ
The nature (32c) of the adjoint excitation and the assumed boundedness of Sobs ensure that (v,p) satisfies the generalized
radiation condition (14).
4.3. Shape sensitivity formula

Setting ðw; ŵÞ ¼ ðu
�
; û
�
Þ in (31), formula (24) for the shape sensitivity J

�
becomes
J
�
¼ Re Aððv; v̂Þ; ðu

�
; û
�
ÞÞ

� �
:

Choosing ðw; ŵÞ ¼ ðv; v̂Þ in (30) then readily yields, by virtue of field equations (32a,b) and the symmetry of Að�; �Þ, the
following expression for J

�
, where the displacement shape sensitivity no longer appears:
J
�
¼ �Re

Z
C
½n � Eðu; vÞ þ n̂ � bEðû; v̂Þ� � hdS

� �
: ð34Þ
Eq. (34) is, however, not well suited for applications where the free and adjoint solutions are computed by means of the
BEM, as it features displacement gradients on C. This is addressed by introducing the decomposition
$u ¼ $Suþ u;n � n ð35Þ
of a gradient in terms of its tangential component $Su and the normal derivative u;n, and expressing the latter in terms of $Su
and t by inverting the relationship t ¼ ðC : $uÞ � n whereby
u;n ¼ D � Dt: ð36Þ
Here, the second-order tensor D and the combination Dt are, respectively defined by D ¼ ½n � C � n��1 (exploiting the minor
symmetry of C), and
Dt ¼ t � ðC : $SuÞ � n: ð37Þ
By virtue of (35)–(37), tensor function Eðu; vÞ can be written in terms of the interfacial tractions and tangential displace-
ment gradients, so that
n � Eðu; vÞ � h ¼ ½$Su : C : $Sv � Dt � D � Dp� qx2u � v�hn � ðt � $Sv þ p � $SuÞ � h:
This finally allows to express (34) in terms of quantities directly available from the boundary element solution. Utilizing
transmission conditions (5) and (32f), the desired form of the shape sensitivity result is thus established as
J
�
¼ Re

Z
C
½$Su : ðbC � CÞ : $Sv � Dt̂ � bD � Dp̂þ Dt � D � Dp� ðq̂� qÞx2u � v�hndS

� �
; ð38Þ
with Dt̂;Dp̂ defined by (37) with C;n replaced by bC; n̂, and bD ¼ ½n̂ � bC � n̂��1.
In the case where either material has isotropic elasticity (which is not a prerequisite for the derivation of (38)), tensors

C;D or bC; bD are given in terms of the shear modulus l and Poisson’s ratio m of the relevant material (with I denoting the
symmetric fourth-order identity tensor) by
C ¼ 2l m
1� 2m

I � I þ I
h i

; D ¼ 1
l

I � 1
2ð1� mÞn� n

� �
:
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5. Material sensitivity

The material sensitivity of the generic cost function (2) is a priori given by
J 0 ¼ Re
Z

Sobs

u;uðu;uobs; nÞ � u0dS

( )
: ð39Þ
5.1. Domain integral formulation, adjoint solution approach

Proceeding along the lines of Section 4, the domain formulation of the displacement material sensitivity ðu0; û0Þ is found
by considering the material sensitivity of weak statement (7), i.e.
Aððu0; û0Þ; ðw; ŵÞÞ ¼ �
Z
bX â0ðû; ŵÞdV ; 8ðw; ŵÞ 2 Vð0Þ ð40Þ
where the bilinear density â0 is defined by (9b) with the inclusion characteristics bC and q̂ replaced, respectively by their sen-
sitivities bC 0 and q̂0.

Expression (39) suggests that J 0 can be expressed in terms of the previously-defined adjoint problem (31). Indeed, on
setting ðw; ŵÞ ¼ ðv; v̂Þ in (40), ðw; ŵÞ ¼ ðu0; û0Þ in (31), and proceeding as before, one finds that
J 0 ¼ �Re
Z
bX â0ðû; v̂ÞdV

� �
: ð41Þ
The domain-integral format of formula (41) is obviously impractical for BEM-based applications. For that reason, alterna-
tive approaches that facilitate the evaluation of J 0 using BEM forward and adjoint solutions are examined next.

Before proceeding to the BIE specialization of (41) and the subsequent numerical results, both focused here on semi-infi-
nite host domains, it should be emphasized that the shape sensitivity formula (38) and its material counterpart (41) are gen-
eral in the sense that they uniformly apply to finite, semi-infinite or infinite ðR3Þ host domains. The present BIE formulation
and its underlying assumption of a semi-infinite ‘‘host” define an illustration, not a limitation, of the proposed shape-mate-
rial sensitivity framework.

5.2. Surface integral formulation, direct approach

The direct differentiation approach makes use of (39) with the material sensitivity u0 on Sobs evaluated by differentiating
the governing boundary integral equations. On expressing the governing pair (10) and (11) in operator form as
T ½u�ðxÞ � U ½t�ðxÞ ¼ uFðxÞbT ½u�ðxÞ � bU ½t�ðxÞ ¼ 0
ðx 2 CÞ; ð42Þ
and keeping in mind that the full-space Green’s tensors bU , bT depend on the inclusion’s material parameters whereas U, T
and the free field uF do not, the sensitivities u0; t0 on C can be shown to solve the pair of integral equations
T ½u0�ðxÞ � U ½t0�ðxÞ ¼ 0bT ½u0�ðxÞ � bU ½t0�ðxÞ ¼ bU 0½t�ðxÞ � bT 0½u�ðxÞ ðx 2 CÞ ð43Þ
where integral operators bU 0, bT 0 featured on the right-hand side are defined in terms of the respective Green’s tensor deriv-
atives bU 0, bT 0, see Appendix A.3.

Once Eq. (43) are solved for u0; t0 on C, the displacement sensitivity u0 on Sobs follows by taking the material sensitivity of
representation formula (13). On substituting the resulting expression into (39), the material sensitivity J 0 is finally given,
using an operator notation similar to that in (42), by
J 0 ¼ Re
Z

Sobs

u;uðu;uobs; nÞ � ðUobs½t0�ðxÞ � T obs½u0�ðxÞÞdS

( )
: ð44Þ
5.3. Surface integral formulation, adjoint solution approach

As an alternative to the above direct differentiation strategy, an [4] adjoint field approach for the evaluation of J 0 as a
surface integral may be formulated as follows. Let the new adjoint state ðv; v̂Þ be defined as the solution of a transposed sys-
tem of integral equations, written in weak form as
Z

C
fvðxÞ � ðT ½w�ðxÞ � U ½tw�ðxÞÞ þ v̂ðxÞ � ð bT ½w�ðxÞ � bU ½tw�ðxÞÞgdSx ¼

Z
Sobs

u;u � ðUobs½tw�ðxÞ � T obs½w�ðxÞÞdSx; 8ðw; twÞ

ð45Þ
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where w and tw are trial (vector) functions on C. Next, multiplying the first and the second equation in (43) respectively by
vðxÞ and v̂ðxÞ, integrating the result over x 2 C, and adding the identities one obtains
Z

C
fvðxÞ � ðT ½u0�ðxÞ � U ½t0�ðxÞÞ þ v̂ðxÞ � ð bT ½u0�ðxÞ � bU ½t0�ðxÞÞgdSx ¼

Z
C

v̂ðxÞ � ðbU 0½t�ðxÞ � bT 0½u�ðxÞÞdSx; 8ðw; twÞ: ð46Þ
Setting ðw; twÞ ¼ ðu0; t0Þ in (45), subtracting the resulting identity from (46) and recalling the material sensitivity formula
(44), material sensitivity J 0 follows in a surface integral, adjoint-based form as
J 0 ¼
Z

C
v̂ðxÞ � ðbU 0½t�ðxÞ � bT 0½u�ðxÞÞdSx: ð47Þ
The above material sensitivity formula is in particular well suited for use within a Galerkin BEM framework, as it involves
two nested surface integrals.

6. Computational treatment

In what follows, an inclusion identification method based on the proposed shape-material sensitivity approach and an
augmented Lagrangian cost functional is implemented using a BEM framework and the underlying assumption that the
background domain X is semi-infinite.

6.1. Boundary integral approximation

To illustrate the utility of sensitivities (38) and (44) for elastic-wave identification of penetrable defects, let the trial
obstacle bX be isotropic and described in terms of a finite set a ¼ ða1; a2; . . . ; aD; l̂; m̂; q̂Þ of Dþ 3 geometric and material
parameters, where l̂, m̂ and q̂ denote respectively the shear modulus, Poisson’s ratio, and mass density of the defect. Intro-
ducing an auxiliary notation
JaðaÞ � J ðbXða1; . . . ; aDÞ; bCðl̂; m̂Þ; q̂Þ ð48Þ
to reflect the defect parametrization and making reference to (20) and (21), the sensitivities oJa=oak used for minimizing JaðaÞ
are computable according to
Geometric :
oJa

oak
¼ J

�
js¼ak

; k ¼ 1;2; . . . ;D ð49aÞ

Material :
oJa

oak
¼ J 0js¼ak

; k ¼ Dþ 1;Dþ 2;Dþ 3: ð49bÞ
Boundary element discretization. For the evaluation of surface integrals over obX ¼ C that are involved in the computation
of J

�
and J 0, one may assume C ¼

SK
e¼1Ee, where fEegK

e¼1 are closed and non-overlapping surface elements. Following the
usual approach, each boundary element Ee � C is parametrized by a mapping E ! Ee that introduces local coordinates,
g ¼ ðg1;g2Þ 2 E, where E is a polygonal domain in R2. The approximating boundary surface, Ch ¼

SK
e¼1Eh

e , can then be gener-
ated by interpolating a set of parameter-dependent nodes nqðaÞ 2 Ee with pre-defined mesh connectivity. To this end, the Q-
noded approximation Eh

e of a generic surface element Ee � C is written as
nðgÞ ¼
XQ

q¼1

NqðgÞnqðaÞ; n 2 Eh
e ; nq 2 Ee; g 2 E; ð50Þ
where Nq are the relevant shape functions. By virtue of (50) the normal transformation velocity hn in (38) is, for a given
parameter ak, approximated as
hnðnÞ � hk
nðnÞ ¼

XQ

q¼1

NqðgÞ
onq

oak
� n; n 2 Eh

e ; n
q 2 Ee; k ¼ 1;2; . . . ;D ð51Þ
where n denotes the unit normal to the surface. Assuming next the isoparametric representation of elastodynamic quanti-
ties, the boundary displacement (u) and traction (t) fields over C are interpolated at a generic point n 2 Eh

e in terms of the
nodal displacements uq and tractions tq at nq 2 Ee as
u ¼
XQ

q¼1

NqðgÞuq; t ¼
XQ

q¼1

NqðgÞtq: ð52Þ
Evaluation of shape sensitivities. The computation of J
�

and J 0 entails solving transmission problems associated, respec-
tively with the primary field u, the adjoint field v, and the material sensitivity field u0 for each material parameter associated
with the inclusion (i.e. a total of five problems under the assumption of isotropic inclusions). With reference to (12), (33),
(42), (43), (50) and (52), the discrete algebraic systems for these fields can be written as
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Primary
HeU � GeT ¼ UF;bH eU � bGeT ¼ 0;

ð53aÞ

Adjoint
HeV � GeP ¼ VF;bH eV � bGeP ¼ 0;

ð53bÞ

Material sensitivity
HeU0 � GeT 0 ¼ 0;bH eU0 � bGeT0 ¼ bG0eT � bH0 eU ð53cÞ
where vectors eU and eT contain the nodal approximations of the primary (displacement and traction) fields u and t; coeffi-
cient matrices H, G, bH and bG approximate the respective integral operators T ;U; bT and bU in (42); eV and eP are associated
with the respective adjoint fields v and p; UF and VF collect the nodal values of the free fields (12) and (33); vectors eU 0
and eT0 refer respectively to u0 and t0, while bH0 and bG0 are the matrix discretizations of bT 0 and bU 0 in (43). The coefficient matri-
ces are the same for all three discretized systems, which allows for a computationally-effective solution of (53b) and (53c)
once the primary problem (53a) has been solved.

In the context of (38), however, the shape sensitivity computation requires not only the primary and adjoint fields on C,
but also their surface gradients. By virtue of (52), the required surface gradient of u is approximated as
$Su ¼
XQ

q¼1

$SNqðgÞ � uq ð54Þ
over each boundary element, with a similar expression applying in terms of $Sv. To evaluate the tangential derivative $SNq

in (54), let the local companion basis fr1; r2;ng at any point n 2 Eh
e be defined from the (differentiable) boundary element

parametrization n ¼ nðgÞ of (50) by
r1 ¼
XQ

q¼1

oNq

og1 nq; r2 ¼
XQ

q¼1

oNq

og2 nq; n ¼ r1 	 r2

kr1 	 r2k
; ð55Þ
so that vectors r1 and r2 are tangent to Eh
e . The surface gradient of shape functions $SNq then takes an explicit form
$SNq ¼ n	 oNq

og2 r1 �
oNq

og1 r2

� �
q ¼ 1;2; . . . ;Q : ð56Þ
Since the triplet fr1; r2;ng defined by (55) forms a positive-oriented basis in R3, reversing the connectivity of a given ele-
ment (i.e. listing its nodes in opposite order) leads to the sign-reversal of n through swapping of r1 and r2. Hence, a desired
orientation for the approximate surface Ch can be achieved by adequately setting the mesh connectivity. Here, quantities
pertaining to X� (background) and bX (inclusion) in sensitivity formula (38), and consequently matrices H and bH in (53a–
c), are defined in terms of the inward and outward orientations of C, respectively. Consistent element orientation is thus
ensured by using two opposite mesh connectivity tables for Ch (one ‘‘direct” for X�, the other ‘‘reverse” for bX). This method
allows for systematic generalization towards multiple-inclusion or nested-inclusion configurations. The surface gradients
(54) are insensitive to the choice of mesh connectivity orientation.

6.2. Parallel computation

Owing to the high computational cost commonly associated with 3D inverse scattering, regularized boundary integral
treatment [36] of the primary, adjoint, and material sensitivity problems in (53a–c) is implemented, together with formulas
(38) and (44) for J

�
and J 0, in a data-parallel code using the message-passing interface (MPI) [35]. Data-type parallelism nor-

mally applies when identical operations are performed concurrently on multiple data items. With reference to (11) and
(53a), such is the case with repeated, time-consuming, computation of the elastodynamic Green’s tensors U and T (under-
lying the evaluation of matrices H and G), in situations when the reference domain X is semi-infinite. In contrast to the fun-
damental solution for an infinite domain R3 which is available in closed form (e.g. bU and bT underpinning matrices bH and bG,
see (A.8a,b)), elastodynamic Green’s tensors for a semi-infinite solid are given as improper integrals [22] whose numerical
quadrature entails two to three orders-of-magnitude higher computational effort.

On denoting by np the number of processes and by N the number of BEM degrees of freedom on C, the code is accordingly
parallelized by block-distributing the computation of H and G matrices (both of dimension N 	 N) where every participating
process is assigned approximately N=np columns of each array. As vectors UF and VF in (53a,b) also involve the (displace-
ment) Green’s tensor U for the reference domain, see (12) and (33), their computation is similarly distributed among the
participating processes. For consistency, matrices bH and bG are likewise computed in parallel fashion, even though this does
not result in a meaningful reduction of the run time owing to the closed form nature of bU and bT . Once computed for the
solution of the primary problem, the LU-factorized ‘‘global” coefficient matrix (combining H, G, bH and bG) is stored and reused
for solving the adjoint and material sensitivity problems.

To illustrate the performance of the parallel code the speed-up ratio Qs, i.e. the ratio of the elapsed time of a serial pro-
gram over that of its parallel counterpart with np processes, is considered. The computation is performed on the IBM Blade-
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Center H cluster equipped with 307 LS21 nodes, each containing two dual-core 2.6 GHz Opteron processors sharing 8 GB of
memory. For the purpose of comparison, the inclusion is described as a nine-parameter ellipsoid ðDþ 3 ¼ 9Þ characterized
by its three centroidal coordinates, three semi-axes, and three material constants. The boundary element mesh approximat-
ing the surface of the defect has 650 nodes; the testing configuration is comprised of 25 uniaxial sources and 36 triaxial
receivers located on the surface of a semi-infinite solid (see Fig. 1). Table 1 shows the CPU times per evaluation of the cost
function Ja and its sensitivities oJa=oak ðk ¼ 1; . . . ;9Þ, the speed-up ratios Qs, and a measure of the per-processor efficiency
Q s=np for the sample problem in a semi-infinite solid. As a point of reference, computation of the analogous problem when
the host domain is infinite ðX ¼ R3Þ, takes 1 minute and 31 seconds on a single processor. In the ensuing examples, the half-
space calculations are performed with np ¼ 48 which represents a reasonable compromise between the speed-up ratio and
per-processor efficiency.

6.3. Defect parametrization

The geometry of the trial defect bX is, for the ensuing numerical experiments, described in terms of an ellipsoid whose
principal axes are aligned with the reference Cartesian frame fO; n1; n2; n3g; its evolution within the host domain X is re-
stricted to (i) translation and (ii) stretch along the principal axes. For problems involving identification of a single isotropic
defect, such description entails the use of a nine-dimensional parametric space
Table 1
Sample

np

CPU tim
Qs

Qs=np
a ¼ c1

d
;
c2

d
;
c3

d
;
a1

d
;
a2

d
;
a3

d
;
l̂
l
; m̂;

q̂
q

� �
ð57Þ
(i.e. D ¼ 6), which incorporates the defect’s centroidal motion ðci; i ¼ 1;2;3Þ, principal stretches ðai; i ¼ 1;2;3Þ, and material
characteristics ðl̂; m̂; q̂Þ. Parameters ak in (57) are moreover defined in dimensionless fashion using material characteristics
ðl;qÞ of the reference solid and an arbitrary length scale d. With such definitions, analytical dependence of the nodal coor-
dinates, nq ¼ nqðaÞ, of the surface mesh on the evolving defect boundary C is introduced as an affine deformation of the
boundary element mesh for a reference unit sphere S (described by Lagrange coordinates ðX1;X2;X3Þ) so that
nq
i ¼ ci þ aiX

q
i ; Xq 2 S; i ¼ 1;2;3 ð58Þ
assuming no summation over index i. On the basis of (57) and (58), one finds that the normal transformation velocities hk
n

defined by (51) are given by
ðhk
n; k ¼ 1; . . . ;DÞ ¼ n1;n2;n3;

n1 � c1

a1
n1;

n2 � c2

a2
n2;

n3 � c3

a3
n3

� �
d: ð59Þ
Since formulas (38) and (44) are not restricted to simply-connected defects, one could parametrize the subsurface heter-
ogeneity as multiple defects, using e.g. description (57) for each. The assumed topology then cannot be altered during the
minimization process. As to the correct choice of ‘‘initial” topology (e.g. in terms of the number of defects), such preliminary
information could be obtained from the available measurements using for instance the methods of topological sensitivity
[18,12,19] or linear sampling [31,8,20].
Fig. 1. Testing grid and sample defects in a semi-infinite solid n3 > 0 ðm ¼ 0:35Þ.

CPU times [min:sec] per evaluation the cost function and its sensitivities

2 4 8 12 24 48 96

e 46:01 23:27 12:41 9:05 5:52 3:24 2:31
1.98 3.89 7.20 10.05 17.01 26.85 36.28
0.99 0.97 0.90 0.84 0.70 0.56 0.38
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6.4. Minimization

As examined earlier, the goal of this study is the 3D identification of ‘‘penetrable” subsurface defects via the minimization
of cost functional J ðbX; bC; q̂Þ given by (2). Here it is important to remember, however, that certain arguments of J , most
notably the material characteristics of the trial defect, are subject to inequality constraints that must be enforced to maintain
the physical relevance of the solution. In the context of isotropic elasticity assumed in the ensuing examples, one finds that
besides q̂ > 0, one must have l̂ > 0 and �1 < m̂ < 0:5 to sustain the positive definiteness of the strain energy density [2].
While numerous techniques are available for nonlinear minimization subject to inequality constraints [34], most of such
algorithms provide only ‘‘soft” bounds that can be violated during the minimization process. To aid the strict enforcement
of the featured inequality constraints on l̂; m̂ and q̂, the nine-dimensional defect parametrization in (57) is restated using the
transformed variables b ¼ ðb1; b2; . . . ; b9Þ 2 R9 where
bk ¼ ak; k ¼ 1; . . . ;6; bk ¼ logðakÞ k ¼ 7;9; b8 ¼ logð0:5� a8Þ ð60Þ
which ensure that l > 0, m < 0:5, and q > 0. The cost function is then expressed naturally in the transformed variables
through JbðbÞ ¼ JaðaÞ, with Ja defined by (48). On the basis of (60), the required sensitivities of Jb can be computed in terms
of oJa=oak given by (38), (44) and (49b) as
oJb

obk
¼ oJa

oak
; k 6 6;

oJb

obk
¼ oJa

oak
ak k ¼ 7;9

oJb

ob8
¼ oJa

oa8
ða8 � 0:5Þ:
The minimization problem is posed in a constrained fashion, using parametrization (60), as
min
b

JbðbÞ; CiðbÞP 0 8i 2 I ; ð61Þ
where the ‘‘soft” inequality constraints Ci (I being a set of integers) reflect any additional restrictions in terms of defect’s
centroidal coordinates ðc1; c2; c3Þ, semi-axes ða1;a2;a3Þ, and material properties ðl̂; m̂; q̂Þ. The inequality constraints used
in the ensuing numerical examples are listed in Appendix A.4.

Following [34], optimization problem (61) is for practical implementation reduced, using slack variables, to the uncon-
strained minimization
min
b

LAðb; km; cmÞ ð62Þ
of an augmented Lagrangian
LAðb; km; cmÞ � JbðbÞ þ
X
i2I

wðCiðbÞ; km
i ; cmÞ;

wðC; k; cÞ ¼ �kC þ C2=2c C 6 ck;

�ck2=2 C > ck

( ð63Þ
whose gradient is computable as
rbLAðb; km; cmÞ ¼ rLAðbÞ �
X

i2I jCiðbÞ6cmkm
i

km
i � CiðbÞ=cm

� 	
rCiðbÞ: ð64Þ
Given the initial penalty parameter c0 > 0, tolerance s0 > 0, starting point b0, and reference vector of Lagrange multipliers
k0, the augmented Lagrangian method introduces a sequence ðm ¼ 1;2; . . .Þ of unconstrained minimization problems with
explicit Lagrange multiplier estimates ðkmÞ and decreasing penalties ðcmÞ that produce a good estimate of the local KKT (Kar-
ush–Kuhn–Tucker) solution, bI, of (61) even when c is not particularly close to zero [34]. This latter feature is highly desir-
able as it reduces the possibility of ill-conditioning that commonly occurs for vanishing values of the penalty parameter c.
The algorithm terminates when krbLAk < sI, where sI is the user-chosen ultimate tolerance.

For any given iterate m, the nonlinear minimization (62) is effected using the BFGS quasi-Newton method [34] (with stop-
ping criterion defined by krbLAk < sm) and an inexact line search based on the strong Wolfe conditions [30]. Due to the
unconstrained character of minimization subproblems (62), constraints (A.14) are ‘‘soft” in that they do not by themselves
prevent b from reaching physically inadmissible, or merely undesirable, values (e.g. penny-shaped ellipsoids which may lead
to an ill-conditioned BEM solution). To deal with the problem, the line search algorithm embedded in (62) has been aug-
mented by a step-reduction feature that prevents b from exceeding the soft-bound limits (A.14) by more than 30%. For
the numerical examples presented next, the internal parameters were set to c0 ¼ 0:025, s0 ¼ 100, k0 ¼ 1,
cmþ1=cm ¼ smþ1=sm ¼ 0:2, and sI ¼ 10�3.

7. Results

The effectiveness of the proposed shape-material sensitivity approach as a tool for reconstructing buried penetrable ob-
jects is now demonstrated on a set of numerical results. In all examples to follow, the buried obstacle is ‘‘illuminated” using
N ¼ 4	 4 ¼ 16 point forces, sequentially applied at locations xn ðn ¼ 1; . . . ;NÞ in the n3-direction over the square testing grid
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ðn1; n2Þ 2 ½�3d;3d� 	 ½�3d;3d� in the n3 ¼ 0 plane, where d is a reference length; for each source, the response of the solid is
monitored using M ¼ 5	 5 ¼ 25 triaxial receivers with locations xm ðm ¼ 1 . . . MÞ arranged (in the same plane) as shown in
Fig. 1. The distance function uðu;uobs; nÞ in (2) is taken in the least-squares form and given by
Table 2
Sensitiv

Sensitiv

Formul
Finite d
uðu;uobs; nÞ ¼ 1
2

XN

n¼1

XM

m¼1

dðn� xmÞju� uobsj2:
Problem quantities are normalized using the length scale d together with the shear modulus and mass density ðl;qÞ of
the reference solid; in particular, the nondimensional angular frequency �x ¼ xdðq=lÞ1=2 is introduced. In all examples, the
reference solid is additionally characterized by m ¼ 0:35.

7.1. Sensitivity evaluation

To verify the numerical implementation, geometric and material sensitivities oJa=oak ðk ¼ 1;2; . . . ;9Þ stemming from (38)
and (44) are compared with their central difference approximations computed using the boundary integral approach of [36]
and a surface mesh with 650 eight-noded quadrangular elements. The comparison is performed at
a ¼ ð:1; :1;3; :5; :5; :5; 2; :35; :9Þ for a ‘‘true” ellipsoid given by atrue ¼ ð0;0;3; :5; :5; :5; 5; :25;1Þ, assuming an infinite reference
domain X ¼ R3 to ensure maximum accuracy for the Green’s functions and focus on the performance of the proposed com-
putation scheme. The frequency of illumination corresponds to �x ¼ 3. From Table 2, one can see that the relative discrep-
ancy between the sensitivity formulas and their central difference approximations (computed using ±4% perturbation on
each parameter) does not exceed 0.4%. It is moreover important to note that the speedup (i.e. the reduction in the compu-
tational effort) over the central difference approach is approximately 1=ð2ðDþ 3ÞÞ where Dþ 3 is the total number of (geo-
metric and material) design parameters. This estimate stems from the fact that formulas (38) and (44) essentially revolve
around the solution of one forward problem (since the adjoint and material sensitivity problems then exploit the existing
matrix factorization), whereas central difference evaluations entail the set-up and solution of two irreducible problems
for each ak.

7.2. Obstacle reconstruction

Two examples are now presented to illustrate the reconstruction of penetrable defects in an isotropic, semi-infinite solid
via shape sensitivities (38), material sensitivities (44), and the constrained minimization approach described in Section 6.4.
In both examples, anticipating the non-convexity characterizing most inverse scattering problems, the initial trial defect is
placed relatively close to its target. This assumption is made reasonable by the fact that probing techniques [42,9] based on
e.g. topological sensitivity [18,12,19] or linear sampling [31,8,20] provide a reliable preliminary information about the defect
location and material characteristics. While these techniques can in principle use the same experimental data exploited by
the nonlinear minimization, their explicit coupling with the present scheme is beyond the scope of this study.

Hard obstacle. For this example the testing grid, placed on the surface of the half-space ðn3 ¼ 0Þ, and the true defect (indi-
cated as ‘‘Hard”) are shown in Fig. 1. The frequency of illumination is again such that �x ¼ 3, corresponding to a shear wave-
length kS ¼ 2pd=3. The true defect, centered at ða1; a2; a3Þtrue ¼ ð1; :5;3Þ, is described as an ellipsoid with semi-axes
ða4; a5; a6Þtrue ¼ ð:4; :6; :5Þ and material properties ðl̂; m̂; q̂Þtrue ¼ ð4l;0:25;1:1qÞ; the initial iterate is placed at
a0 ¼ ð�:4;�:2;2:5; :5; :5; :5; 1:8; :3;1Þ, see Fig. 1.

To avoid committing the ‘‘inverse crime” [16] whereby the same model is used to synthesize as well as to invert the data
in an inverse problem, synthetic observations uobs are generated using a boundary element mesh with 1460 nodes, whereas
the minimization exploits a coarser mesh with 650 nodes. Fig. 2 illustrates the iterative reconstruction process for this exam-
ple. To aid the physical insight, the bottom right panel depicts selected iterations in the 3D space, with the surface color of
each iterate (i.e. trial defect) corresponding to its shear modulus according to the attached color bar. As can be seen from the
display, the solution converges to the global minimum of J after approximately 70 iterations. Not surprisingly, the centroi-
dal coordinates exhibit the fastest convergence, followed by that in terms of the semi-axes and material properties. It should
be noted, however, that the synthetic data in this example contain no extraneous perturbations other than those caused by
the use of dissimilar BEM meshes. To examine the effect of measurement uncertainties, synthetic observations uobs are next
corrupted as
~uobs :¼ ð1þ .vÞuobs ð65Þ
over all source-receiver pairs, where . is the noise amplitude and v 2 ½�1;1� is a uniform random variable. Table 3 lists the
reconstructed defect parameters for the noise amplitude levels of 0, 1, and 2%. The defect reconstruction is seen to be fairly
ities oak
J � oJ =oak: comparison with central differences

ity oc1J oc2 J oc3J oa1J oa2J oa3 J ol̂J om̂J oq̂J

ae 0.3884 0.3884 3.669 �8.384 �8.384 �9.803 �3.286 .07205 �2.857
iff. 0.3873 0.3873 3.666 �8.384 �8.384 �9.802 �3.289 .07231 �2.856
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Fig. 2. Reconstruction of a hard defect ( �x ¼ 3, l̂true ¼ 4l).

Table 3
Sensitivity of the solution to experimental noise (hard defect)

Parameter c1=d c2=d c3=d a1=d a2=d a3=d l̂=l m̂ q̂=l

True 1.0 0.50 3.0 0.40 0.60 0.50 5.0 0.25 1.1
Identified, . ¼ 0% 1.0 0.50 3.0 0.40 0.60 0.50 5.0 0.25 1.1
Identified, . ¼ 1% 0.996 0.496 3.0 0.408 0.607 0.508 3.76 0.297 1.1
Identified, . ¼ 2% 0.992 0.492 2.99 0.367 0.583 0.481 5.19 0.016 1.06
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sensitive to measurement noise. For instance, a . ¼ 1% perturbation of experimental data leads to average (absolute) errors
of 0.4%, 1.6% and 15% in terms of the defect’s centroid, semi-axes, and material properties. While the latter figure may seem
excessive, one may recall that perturbation (65) is specified in terms of the total field u. As a point of reference, the induced
perturbation in terms of the scattered field uS � uF , which carries all available information about the defect, exceeds 50% for
selected source-receiver pairs when . ¼ 1%. In practical situations, this problem may be mitigated using a combination of (i)
multi-tonal illumination, in combination with accelerated BEM such as the Fast multipole method allowing for higher fre-
quencies in forward simulations [14,33], and (ii) Bayesian (e.g. maximum likelihood) data analysis, where prior information
on the sought inclusion and measurement errors are incorporated into a posterior probability density function [45].

Soft obstacle. To illustrate the method in cases where the inclusion is more compliant than the background material, this
example considers a true defect with centroidal coordinates ða1; a2; a3Þtrue ¼ ð�1:1;�0:3;2:7Þ, semi-axes ða4; a5; a6Þtrue ¼
ð:6; :8; :6Þ and material properties ðl̂; m̂; q̂Þtrue ¼ ð0:2 l;0:1;0:8qÞ. The testing arrangement, mimicking that in the previous
example, as well as the true (‘‘Soft”) defect are again shown in Fig. 1. Each of the 16 sequentially applied point sources acts
in the n3-direction at frequency �x ¼ 2, corresponding to a shear wavelength kS ¼ pd. The meshes used for the generation of
synthetic measurements and the reconstruction respectively feature 650 and 290 nodes. Fig. 3 illustrates the reconstruction
of the soft defect, assuming a0 ¼ ð�:4;�:2;2:5; :5; :5; :5; :8; :3;1Þ for the initial iterate whose geometry is shown in Fig. 1.
Again, the bottom right-hand panel plots the selected iterations, color-coded according to the trial shear modulus l̂ of each
iterate. In this case, the solution converges to the global minimum of J after approximately 50 iterations, with centroidal
coordinates leading the way. With reference to the bottom left-hand panel, a notable feature of the minimization process
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is an activated inequality constraint m̂ 6 0:49, see (A.14), which steers the numerical solution safely away from the incom-
pressible case m ¼ 0:5.

8. Conclusions

In this work, 3D inverse scattering of elastic waves involving penetrable solid defects is investigated within the frame-
work of a boundary integral equation method. The inverse problem is reduced to the minimization of a misfit between
experimental observations and their simulations for a trial inclusion. To maximize the accuracy and efficiency of gradi-
ent-based search algorithms, the shape sensitivity of the cost function is formulated via an adjoint problem approach,
extending earlier works on void identification. This is complemented by a novel material sensitivity formulation, developed
using two alternative methodologies, namely the direct differentiation and adjoint field approaches. The proposed shape and
material sensitivity formulas, computable as surface integrals over the trial defect boundary, are implemented and incorpo-
rated into a nonlinear optimization algorithm based on an augmented Lagrangian that facilitates the imposition of inequality
constraints. From preliminary numerical studies, the latter were found to be critical in avoiding physically inadmissible or
computationally inadequate trial inclusion configurations. The effectiveness of the proposed sensitivity formulation is dem-
onstrated on numerical examples dealing with the reconstruction of an ellipsoidal inclusion embedded in a semi-infinite so-
lid. Future work towards a comprehensive computational platform for elastic-wave imaging of penetrable defects will
incorporate other necessary components: preliminary defect-indicator function based on e.g. topological sensitivity or linear
sampling methods, refined misfit functions based on e.g. Bayesian concepts that allow for stochastic data analysis, and a fast
multipole (accelerated) version of the elastodynamic boundary element method.

Appendix Appendices. A.1. Proof of identity (27)

From (22) and the symmetry properties of the elastic tensor C, one obtains
ð$u : C : $wÞ� ¼ $u : C : ð$ w
�
�$w � $hÞ þ $w : C : ð$ u

�
�$u � $hÞ;
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which, used with differentiation formula (23) and definition (9a) of að�; �Þ, gives
Z
X�

aðu;wÞdV
� ��

¼
Z

X�
faðu

�
;wÞ þ aðu;w

�
ÞgdV þ

Z
X�

Eðu;wÞ : ½$h�TdV ðA:1Þ
with Eð�; �Þ defined by (28). Moreover, one easily checks by that the following identity holds for any pair of (sufficiently
smooth) fields u,w:
Eðu;wÞ : ½$h�T ¼ ðLu � $wþ Lw � $uÞ � hþ div½Eðu;wÞ � h� ðA:2Þ
On using (A.2), applying the divergence theorem together with (17c), and invoking field Eq. (4a), Eq. (A.1) becomes
Z
X�

aðu;wÞdV
� ��

¼
Z

X�
faðu

�
;wÞ þ aðu;w

�
ÞgdV þ

Z
X�

Lw � ð$u � hÞdV þ
Z

C
n � Eðu;wÞ � hdS; ðA:3Þ
Applying the same treatment to the second integral of (8b) yields a variant of (A.3) wherein X�;n;u;w;C;q are respectively
replaced with bX; n̂; û; ŵ; bC; q̂. Expression (27) then follows from applying (A.3) and its counterpart to (8b) and invoking def-
inition (8b) for interpreting terms featuring að�; �Þ or âð�; �Þ.

A.2. Generalization of (30) to arbitrary free fields

The proof of sensitivity result (38) given in Section 4 assumes that either (i) X is bounded or (ii) the free field satisfies the
generalized radiation condition at infinity. Assumption (ii) can be relaxed so that any free-field uF satisfying LuF ¼ 0 in X
(e.g. a plane wave) is permitted. This result rests upon a modified version of the weak formulation (7) which reads
Z

X�
aðuS;wÞdV þ

Z
bXfâðû; ŵÞ � aðûF; ŵÞgdV ¼ 0 8ðw; ŵÞ 2 Vð0Þ; ðA:4Þ
where uS ¼ u� uF is the scattered field in X�. A derivation along the lines of Appendix (A.1) yields the Lagrangian derivative
form of equation (A.4) as
0 ¼ A u
� S; û

�
S

� �
; ðw; ŵÞ

� �
þ
Z

X�
Lw � ð$uS � hÞdV þ

Z
C

n � EðuS;wÞ � hdSþ
Z
bX â û

�
F; ŵ

� �
þ L̂ŵ � ð$û � hÞ

� �
dV

þ
Z

C
n̂ � bEðû; ŵÞ � hdS�

Z
bX a û

�
F; ŵ

� �
þ Lŵ � ð$ûF � hÞ

� �
dV �

Z
C

n̂ � EðûF; ŵÞ � hdS ðA:5Þ
Identity (A.5) is rearranged by noting that the free field satisfies
Z
OnbX aðuF;wÞdV þ

Z
bX aðûF; ŵÞdV �

Z
oO

tF �wdS

( )�
¼ 0 8ðw; ŵÞ 2 Vð0Þ
(with O as introduced in (17)) which, upon carrying out the Lagrangian differentiation, yields
�
Z
bX a û

�
F; ŵ

� �
þ Lŵ � ð$ûF � hÞ

� �
dV �

Z
C

n̂ � EðûF; ŵÞ � hdS

¼
Z
OnbX a u

� F;w

 �

þ Lw � ð$uF � hÞ
h i

dV þ
Z

C
n � EðuF;wÞ � hdS; ðA:6Þ
The free field, being insensitive to the inclusion shape and properties, has a Lagrangian derivative given by û
�

F ¼ $ûF � h,
which in turn implies that
a û
�

F; ŵ
� �

þ Lw � ð$uF � hÞ ¼ að$uF � h;wÞ þ Lw � ð$uF � hÞ ¼ div½ðC : $wÞ � $uF � h� ðA:7Þ
Substituting (A.6) into (A.5) and using (A.7) with the divergence theorem, the counterpart of the weak shape sensitivity for-
mulation (30) is found as
A u
� S; û

�
S

� �
; ðw; ŵÞ

� �
¼ �

Z
X�

Lw � ð$uS � hÞdV �
Z
bX bLŵ � ð$ûF � hÞdV �

Z
C
½n � Eðu;wÞ þ n̂ � bEðû; ŵÞ� � hdS

�
Z

C
ðtw þ t̂wÞ � $uF � hdS 8ðw; ŵÞ 2 Vð0Þ:
From that point, the adjoint solution is again defined by (31). Proceeding as in Section 4, one finds that the shape sensi-
tivity formula (30) still holds, in particular because the last integral in (A.5) vanishes by virtue of conditions (32f).

A.3. Material sensitivity of elastodynamic fundamental solution

The full-space elastodynamic Green’s tensors bU and bT are given, for the inclusion medium, by their components
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bUi‘ðx; nÞ ¼
1

l̂k̂2
S

Gðr; k̂SÞ � Gðr; k̂PÞ
h i

;i‘
þ 1

l̂
Gðr; k̂SÞdi‘ ðA:8aÞ

bT i‘ðx; nÞ ¼ G;jðr; k̂SÞdi‘nj þ G;iðr; k̂SÞn‘ þ ð1� 2ĉ2ÞG;‘ðr; k̂PÞni þ
2

k̂2
S

½Gðr; k̂SÞ � Gðr; k̂PÞ�;ij‘nj ðA:8bÞ
where r ¼ jn� xj is the distance between integration and collocation points, n ¼ nðnÞ is the unit normal at integration point
n, commas indicate partial derivatives with respect to Cartesian components of n, k̂S and k̂P denote the shear and longitudinal
wavenumbers in the inclusion, respectively given by
k̂S ¼ xðq̂=l̂Þ1=2
; k̂P ¼ ĉk̂S; with ĉ2 ¼ 1� 2m̂

2ð1� m̂Þ ; ðA:9Þ
and Gð�; kÞ is the free-space Green’s function for the Helmholtz equation with wavenumber k, given by
Gðr; kÞ ¼ expð�ikrÞ
4pr

ðA:10Þ
(the minus sign in the exponential being consistent with the assumed implicit time-harmonic factor expðixtÞ). Noting that
okG ¼ �irG; G;i ¼ �r;i
1
r
þ ik

� �
G

(where notation ok indicates partial differentiation w.r.t. k) one readily obtains
okG;iðr; kÞ ¼ �krr;iGðr; kÞ;
okG;ijðr; kÞ ¼ �k½rr;iG;jðr; kÞ þ dijGðr; kÞ�;
okG;ij‘ðr; kÞ ¼ �k½rr;iG;jkðr; kÞ þ dijG;kðr; kÞ þ dikG;jðr; kÞ�:
With the help of the above identities, the partial derivatives of the Green’s function (A.8a-b) with respect to the wavenum-
bers are found to be given by
l̂k̂Sok̂S
bUi‘ ¼ ½ð1þ ik̂SrÞr;ir;‘ þ ð1� ik̂SrÞdi‘�Gðr; k̂SÞ � 2l̂bUi‘; ðA:11aÞ

l̂k̂Pok̂P
bUi‘ ¼ �ĉ2½ðik̂Pr þ 1Þr;ir;‘ � di‘�Gðr; k̂PÞ; ðA:11bÞ

k̂Sok̂S
bT i‘ ¼ �2bT i‘ þ 2rniG;‘ðr; k̂PÞ � 2rr;‘njG;ijðr; k̂SÞ � k̂2

Srðd‘ir;n þ r;in‘ÞGðr; k̂SÞ ðA:11cÞ

k̂Pok̂P
bT i‘ ¼ ĉ2½2rr;‘njG;ijðr; k̂PÞ þ 2k̂2

P � k̂2
S


 �
rr;‘niGðr; k̂PÞ þ 2rðn‘G;iðr; k̂PÞ � niG;‘ðr; k̂PÞÞ� ðA:11dÞ
with ĉ again given by (A.9), and having set r;n ¼ r;jn;j. Then, noting that
ok̂P

oq̂
¼ k̂P

2q̂
;
ok̂P

ol̂
¼ �k̂P

2l̂
;
ok̂P

om̂
¼ �ĉ2

ðĉ2 � 1Þ2
k̂P;

o

ol̂
bUi‘ ¼ �

1
l̂
bUi‘;

ok̂S

oq̂
¼ k̂S

2q̂
;
ok̂S

ol̂
¼ �k̂S

2l̂
;
ok̂S

om̂
¼ 0
the sensitivities of bU and bT with respect to the material parameters of the inclusion are given in terms of expressions (A.11a–
d) by
dbUi‘

dq̂
¼ 1

2q̂
ðk̂Pok̂P

þ k̂Sok̂S
ÞbUi‘

dbT i‘

dq̂
¼ 1

2q̂
ðk̂Pok̂P

þ k̂Sok̂S
ÞbT i‘

dbUi‘

dl̂
¼ � 1

2l̂
ð2þ k̂Pok̂P

þ k̂Sok̂S
ÞbUi‘

dbT i‘

dl̂
¼ � 1

2l̂
ðk̂Pok̂P

þ k̂Sok̂S
ÞbT i‘

dbUi‘

dm̂
¼ �ĉ2k̂P

ðĉ2 � 1Þ2
ok̂P
bUi‘

dbT i‘

dm̂
¼ �ĉ2k̂P

ðĉ2 � 1Þ2
ok̂P
bT i‘
The total material parameter sensitivities of kernels bU 0 and bT 0 used in (43) are finally given in terms of the above expressions
by
bU 0 ¼ q̂0
d

dq̂
bU þ l̂0 d

dl̂
bU þ m̂0

d
dm̂
bU ; bT 0 ¼ q̂0

d
dq̂
bT þ l̂0 d

dl̂
bT þ m̂0

d
dm̂
bT ðA:12Þ
Leading singularity of kernel sensitivities. It is useful to investigate the leading contributions to kernel sensitivities
(A.12) for r ! 0, e.g. for the purpose of handling singular element integrals. Noting that the corresponding leading contribu-
tions for the elastodynamic kernels (A.8a-b) themselves are the corresponding components of the elastostatic Kelvin
solution, given by
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½bUi‘�1 ¼
1

8pl̂r
½ð1þ ĉ2Þdi‘ þ ð1� ĉ2Þr;ir;‘�; ðA:13aÞ

½bT i‘�1 ¼
1

4pr2 ½3ðĉ
2 � 1Þr;ir;‘r;jnj þ ĉ2ðr;‘ni � di‘r;jnj � r;in‘Þ�; ðA:13bÞ
the leading contributions to (A.12) for r ! 0 are easily obtained from
dbUi‘

dq̂
¼ 0þ Oð1Þ; dbUi‘

dl̂
¼ � 1

l̂
½bUi‘�1 þ Oð1Þ;

dbT i‘

dq̂
¼ 0þ Oð1Þ; dbT i‘

dl̂
¼ 0þ Oð1Þ;

dbUi‘

dm̂
¼ 1

16pl̂ð1� m̂Þ2r
ðr;ir;‘ � di‘Þ þ Oð1Þ;

dbT i‘

dm̂
¼ 1

8pð1� m̂Þ2r2
ðd‘ir;n þ r;in‘ � r;‘ni � 3r;ir;‘r;nÞ þ Oð1Þ;
which coincide, as expected, with the corresponding material sensitivities of the Kelvin solution (A.13a and b).

A.4. Inequality constraints

With reference to parametric descriptions (57) and (60) and the constrained minimization problem (61), a lower and an
upper bound is imposed on each parameter bi ði ¼ 1;2; . . . ;9Þ, resulting in the total of 18 constraints CiðbÞ. On noting that the
size of the square testing area Sobs in Fig. 1 is 4d	 4d, these inequality constraints are specified so that
Centroid : �5d
2
6 Ci 6

5d
2
ði ¼ 1;2Þ; d

20
6 c3 � a3; c3 6 5d;

Semi� axes :
d

20
6 ai 6 dði ¼ 1;2;3Þ; ðA:14Þ

Material properties :
l

100
6 l̂ 6 10 l; 0:01 6 0̂:5� m̂ 6 0:5;

q
100

6 q̂ 6 3q;
where l and q are the shear modulus and the mass density of the reference (i.e. background) solid. Physically, the restric-
tions on ci require that the centroid of the defect is located at least partially ‘‘under” the testing area, that the defect is phys-
ically separated from the surface of the half-space, and that the maximum search depth be commensurate with the size of
the testing grid; the bounds on the ellipsoid’s semi-axes are imposed to avoid overly distorted shapes, while the additional
restrictions on material parameters are used to (i) prevent ill-conditioning of the numerical solution (e.g. in terms of exces-
sively small values of l̂), and (ii) focus the search on the range of expected values.
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